Comparing the importance of prognostic factors in Cox and logistic regression using SAS
نویسندگان
چکیده
Two SAS macro programs are presented that evaluate the relative importance of prognostic factors in the proportional hazards regression model and in the logistic regression model. The importance of a prognostic factor is quantified by the proportion of variation in the outcome attributable to this factor. For proportional hazards regression, the program %RELIMPCR uses the recently proposed measure V to calculate the proportion of explained variation (PEV). For the logistic model, the R(2) measure based on squared raw residuals is used by the program %RELIMPLR. Both programs are able to compute marginal and partial PEV, to compare PEVs of factors, of groups of factors, and even to compare PEVs of different models. The programs use a bootstrap resampling scheme to test differences of the PEVs of different factors. Confidence limits for P-values are provided. The programs further allow to base the computation of PEV on models with shrinked or bias-corrected parameter estimates. The SAS macros are freely available at www.akh-wien.ac.at/imc/biometrie/relimp
منابع مشابه
Comparing the Results of Logistic Regression Model and Classification and Regression Tree Analysis in Determining Prognostic Factors for Coronary Artery Disease in Mashhad, Iran
Background and purpose: Understanding of the risk factors for cardiovascular artery disease, which is the leading cause of death worldwide, can lead to essential changes in its etiology, prevalence, and treatment. The aim of this study was to compare the results of logistic regression model and Classification and Regression Tree Analysis (CART) in determining the prognostic factors for coronary...
متن کاملPrognostic factors of survival of patients with oesophageal cancer under radiotherapy using cox regression model
oesophageal cancer is one of the most fatal cancer in human in spite of high incidence in the north of Iran and poor prognosis,there is not information regarding prognostic factors in this area.this study was conducted to determine prognodtic factors of the survival of patients with oesophageal cancer under radiotherapy.We conducted a descriptive-analytical study using historical cohort that ha...
متن کاملEvaluation of risk factors of recurrence of hodgkin\'s lymphoma using random survival forest and comparison with cox regression model
Background: In many studies, Cox regression was used to assess the important factors that affect the survival of cancer patients based on demographic and clinical variables. The aim of this study was to determine the factors affecting the survival of patients with Hodgkin's lymphoma using the random survival forest (RSF) method and compare it with the Cox model. Methods: In this retrospective ...
متن کاملتحلیل بقای بیماران سرطان کولورکتال و عوامل پیشآگهی دهنده با استفاده از مدل رگرسیون کاکس
Background: Colorectal cancer is the third current cancer in the world and the forth cause of death in cancers. Certain factors such as environmental, genetic and life style are related with this cancer. The objective of this study is to find the survival of Iranian patients with colorectal cancer and also to find its prognostic factors. Methods: In this survival study, the data was co...
متن کاملاستفاده از مدل چندجملهای کسری در تعیین عوامل مرتبط با بقای بیماران مبتلا به سرطان معده
Background & Objectives: Cox regression model is one of the statistical methods in survival analysis. The use of smoothing techniques in Cox model makes the more accurate estimates for the parameters. Fractional polynomial is one of these techniques in Cox model. The aim of this study was to assess the effects of prognostic factors on survival of patients with gastric cancer using the fractiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer methods and programs in biomedicine
دوره 71 2 شماره
صفحات -
تاریخ انتشار 2003